Journal of Organometallic Chemistry, 101 (1975) C40-C42 © Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

Preliminary communication

STABILIZATION OF A CARBANION BY α-Me₃Si GROUPS. THE KINETIC ACIDITY OF TRIS(TRIMETHYLSILYL)METHANE

COLIN EABORN*, RUDOLF EIDENSCHINK, PATRICIA M. JACKSON and DAVID R.M. WALTON

School of Molecular Sciences, University of Sussex, Brighton BN1 9QJ (Great Britain) (Received October 2nd, 1975)

Summary

In Me₂SO/H₂O/KOH at 50°C, (Me₃Si)₃C³H undergoes detritiation about 5-7 times as rapidly as Ph₃C³H, indicating that α -Me₃Si groups substantially stabilize carbanions.

The metallation which occurs at C—H bonds α to Me₃Si groups [1,2] can reasonably be attributed to some stabilization of the carbanions by $(p \rightarrow d)_{\pi}$ interaction with the silicon atom. Such stabilization was considered to contribute to the low reactivity of (Me₃Si)₃CLi [2], but steric effects probably dominate in this case. Steric effects also account for the fact that additional α -Me₃Si groups hinder the base cleavage of a C—SiMe₃ bond [e.g. PhCH(SiMe₃)₂ is less reactive than PhCH₂SiMe₃] in spite of the expected additional stabilization of the separating carbanion [3].

Recently ab initio calculations in this School indicated that the α -H₃Si group should substantially stabilize a carbanion, possibly more so than an α -Ph group [4], and there is recent indirect evidence from preparative studies that an α -Me₃Si does stabilize more than an α -Ph group [5]. To obtain direct information we have now compared the kinetic acidities of (Me₃Si)₃CH and Ph₃CH.

With Ph₃C³H, detriviation in a mixture of Me₂SO(6 vol) and 1.0 *M* aqueous KOH (1 vol) at 50°C gave a good first-order plot to more than 75% completion of reaction, with a residual count of <5% of the initial count; the first order constant is $3.6 \times 10^{-5} \text{ s}^{-1}$. With (Me₃Si)₃C³H, in a period equal to 25 times that for loss of the first 25% count the count fell by only 75%, i.e. there was an unexpected residual activity of ca. 25%, though this "residual" count continued to fall slowly. The residual count of ca. 25% could in principle be due to contamination of the (Me₃Si)₃C³H by material tritiated in a Me₃Si group, and effectively inert. A first order plot based on this extreme assumption is linear to about

^{*}To whom correspondence should be addressed.

70% reaction and corresponds with a rate constant of 2.3×10^{-4} s⁻¹. However, GLC analysis showed that $(Me_3Si)_2CH_2$ was formed, and the residual count is probably mainly due to conversion of $(Me_3Si)_3C^3H$ into $(Me_3Si)_2CH^3H$ at a rate equal to about one-quarter of that of the exchange. On this assumption and the further simplifying assumption that the $(Me_3Si)_2CH^3H$ is effectively inert to exchange, the first order plot is linear to about 65% of reaction and corresponds to a rate constant of 1.9×10^{-4} s⁻¹. If the residual count is ignored, and the assumption made that the count is tending to zero, the first order plot is linear over only about 35% of reaction, and the corresponding rate constant is ca. 1.8×10^{-4} s⁻¹. Probably the $(Me_3Si)_3C^3H$ both contained inert tritiated material and gave $(Me_3Si)_2CH^3H$, with the latter undergoing detritiation at a significant rate, but further analyses seems unprofitable, since the uncertainties do not cast doubt on the conclusion that $(Me_3Si)_3C^3H$ undergoes exchange about 5-7 times as fast as Ph_3C^3H .

This evidence that the kinetic acidity of $(Me_3Si)_3CH$ is greater than that of Ph₃CH does not necessarily mean that the equilibrium acidities would be in this order, though this is likely. Furthermore, since for steric reasons the 3 phenyl groups in the Ph₃C⁻ ion are thought to be unable to exert their maximum delocalizing potential, the acidity of Me₃SiCH₃ would not necessarily be greater than that of PhCH₃. It is clear, however, that α -Me₃Si groups can substantially stabilize carbanions.

The fairly ready cleavage of $(Me_3Si)_3CH$ to $(Me_3Si)_2CH_2$ is itself a reflection of the influence of the Me₃Si groups in stabilizing the $(Me_3Si)_2HC^-$ anion.

Experimental

Materials

The sample of Ph_3C^3H was made by adding tritiated water to Ph_3CLi obtained by treating Ph_3CH with n-BuLi in ether/THF. The product was recrystallized from methanol to constant activity (1580 c.p.s./mg).

The $(Me_3Si)_3C^3H$ (activity 8680 c.p.s./mg) was made analogously from $(Me_3Si)_3CLi$ obtained by metallation of $(Me_3Si)_3CH$ with MeLi in THF/Et₂O [2]. It had b.p. 216°C and GLC revealed no impurity.

Rate measurements

A solution of the tritiated material (ca. 5 mg) in Me₂SO (30 ml) at 50°C was mixed with 1.0 *M* aqueous KOH (5 ml) and the mixture was placed in a thermostat at 50.0°C. At appropriate intervals 1 ml aliquots were withdrawn and added to a mixture of water (20 ml) with toluene (10 ml) containing a scintillator [6]. The toluene layer was washed with water (3×20 ml) and dried, and a 5 ml sample taken for counting.

For $(Me_3Si)_3C^3H$, a typical pattern of the variation with time (min. unless otherwise indicated) of the percentage count (in parentheses) was as follows: 0 (100); 10(90); 20(80); 30(72.5); 50(60); 60(55); 70(51); 80(48); 100(44); 130(41); 6 h(27); 24 h(25); 48 h(23). If the residual activity is due to formation of $(Me_3Si)_2CH^3H$ at a rate 0.25 that of the exchange, when the count has fallen to (100 - x)%, the proportion, P, of $(Me_3Si)_3C^3H$ which has lost its tritium is given by (100 - x)/(100 - 0.25x); a plot of log (1 - P) against time is linear

down to P = 0.35 (i.e. 65% exchange).

Products

GLC analyses (5% Carbowax M) of the mixture obtained from $(Me_3Si)_3CH$ after about 15 h revealed that in addition to $(Me_3Si)_3CH$ some $(Me_3Si)_2CH_2$ was present, this was identified by its retention time and mass spectrum in a linked GLC-mass spectrometer system. [The peak of highest mass was at 145 (M-15)(strong), just as that from $(Me_3Si)_3CH$ was at 217 (M-15)].

Acknowledgements

We thank the Dow Corning Corporation for support of this research, and the Deutsche Forschungsgemeinschaft for the award of a Fellowship to R.E.

References

- 2 M.A. Cook, C. Eaborn, A.E. Jukes and D.R.M. Walton, J. Organometal. Chem., 24 (1970) 529.
- 3 C. Eaborn, K.L. Sinnitambe and D.R.M. Walton, J. Chem. Soc. Perkin II, (1975) 380.
- 4 S. Durmaz, J. Organometal. Chem., 96 (1975) 331.
- 5 C. Biran, N. Duffaut, J. Dunogues and R. Calas, J. Organometal. Chem., 91 (1975) 279.
- 6 J.M. Blatchly and R. Taylor, J. Chem. Soc., (1964) 4641; C. Eaborn and R. Taylor, J. Chem. Soc., (1960) 3301.

¹ D.J. Peterson, J. Organometal. Chem., 9 (1967) 373.